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ABSTRACT 

The anomalous dimension of the twist four gluonic operator (7, ) in deep 
inelastic scattering is calculated in the double log approximation of perturbativc 
QCD. It turns out that at N -+ 1 the vdue of 7,(N - 1) is dose to 27,(v) (7, 
is the anomalous dimension of the leading twist operator) but it is larger by fsctor 
(1 + 6l) where 6’ - lo-‘. It means that at N -+ 1 ( or a~ - 0) the contribution 
of the higher twist operator becomes very important and gives rise to a mreening 
correction to the deep inelastic structure function. 

1. The main goal of the paper. 
Let me start by recalling the main steps of our theoretical approach to deeply 
inelastic scattering: 
1. We introduce the moments of the deep inelastic structure functioqnamely 

M(w,r) = 
l’ 

a;-‘drs ZBG(ZB, Q’) = 
I 

- e’“&dz&(w, @)I , (1) o 

where Y = N - 1, y = ln(l/za) and z = I~(Q’/Q:). 
2. Each moment is given as Wilson Operator Product Expansion in the form: 

M(wr) = c2(%+)(Plo(‘)lP) + i+(Y,f)@Io(4)IP) + . ..~c.(Y.r)(PIo(~)lP) ... (3) 

where ci is the coefficient function and (pl~(‘)lp) is the matrix element of the twist i 
operator (see ref.[l] for details). 
3. It is well known from the renormalization group approach that a coefficient 
function CT+ behaves as 

ci m e”w’ (3) 

where ri is the anomalous dimension of the twist i operator I. 
4. Now we neglected all high twist contributions ( all terms in eq. (1) except the 
first one ) assuming that they are small at large value of Q’ due to the factor + 
in front. 

‘For .inplidt, we cotidu here the cue of Axed P,. 
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6. The anomalous dimension of the leading twist contribution can be calculated 
using GLAP evolution equation [2] and it is equal to 

72(w) = 5 at w--to 

6. The specific contribution to the value of the anomalous dimension of high twist 
operator that originates from the exchange of many ‘leading twist ladders’ in t- 
channel was found in the GLR paper (31 . It gives 

n,(w) = n7dX). (5) 

It is very instructive to consider the twist four contribution to illustrate the above 
statement. The two ladder exchange leads to the following contribution 

C,(w,r)@jO(‘)Ip) = / $&(w’, 7)C,(Y - w’,,)@IO(‘)lp) cx J dw’eT+-++~+~)~ . (6) 

The integral has an obvious saddle point w’ = w/2, so CT, 01 eflr(t)t. Thus 74 = 
272(r). 
2. The result. 
Recently Bartels [4] and Levin,Ryskin and Shuvaev [5] have made the next step in 
understanding the high twist contribution to eq. (1) and both groups calculated the 
anomalous dimension of the twist four gluon operator, using a completely different 
techniques. It turns out that the value of the anomalous dimension is equal to 

74 = 27*(3[1 + a’] = + [l + a1 (7) 

where 6’ - (A)’ z. IO-~ is very small. 
The Lost important outcome of this calculation is the fact that we cannot 

trust the GLAP evolution equation in the region of small w (or large ln(l/z~) 
). Indeed for w < we the twist four contribution in eq. (1) becomes larger than the 
leading twist one. The value of we can be found from the equation 

7,(Yn) = z = -1 + 7&r) = -1 + +5’[1+6’], 
LI 

Of course we could arrive at the same conclusion using GLR approach but now we 
proved this statement considering the whole set of Feynman diagrams instead of 
the two ladder contribution that the GLR paper took into account [3]. 
Di&ence. In two papers the quite different approaches have been used. Bartels’ 
one is based on reggeon technique in multireggeon kinematical region and s- channel 
and t-channel units&y. We sum up the Feyman diagrams directly in double log 
approximation of QCD with integration over longitudinal coordinates accordingly 
the rules formulated in ref. [6]. We got the different results, namely 6~.,,.,, = 2 
6,,.It is not clear at ail who is right, but I want to stress that this difference is 
intimtaly connected with the space - time structure of the parton cascade in QCD. 
So when we will understand this difference we certainly will have to say more about 



cascade evolution in &CD. 
Good newt. I would like to di scuss first several lessons that we have learned from 
this calculation: 
1. Eq. (7) confirms the main hypothesis of ref. [3] which is that the small zg 
behaviour of the deep inelastic structure function is determined by the exchange of 
many Pomerons in t-channel and their interaction. 
2. The smallness of 6 mentioned above reflects the smallness of pomeron - pomeron 
interaction which is nonplanar and proportional to &. 
3. Strictly speaking the pomeron-pomeron interact& was not taken into account 
in the GLR - equstion.However the good news is the fact that the correction to the 
GLR equation is so small that it gives a noticeable contribution only at ultra high 
energies. 
Bad Nemo. However the main theoretical conclusion from this exercise looks rather 
pessimistic because it was shown that QCD cannot cure the old problem of the 
reggeon approach that was pointed out in ref. [6], namely, the fact that pomeron 
cannot be the correct first approximation to high energy interaction of virtual pho- 
ton with a hadron at least in perturbative QCD. In other words the pomeron - 
pomeron interactions turns out to be attractive and the system of many pomerons 
cannot be stable. Of course we made only the first step to study the above problem 
in a self consistent way and the next one will be to consider the value of anomalous 
dimension of even higher twist operators, but there is a priori no reason to think 
that the specific coherence effects in QCD will be able to help us for the twist n > 4 
operators. 
3. The evolution equation. 

I think it is very instructive to understand the physical meaning of this 
result in terms of the evolution equation for the parton cascade . We can suggest 
the generalization of the GLR evolution equation taking into account the interaction 
of the pomerons for the twist four operator. It looks like a system of two equations. 
which are simpler to write down in the integro - differential form in the DLA of 
perturbative QCD. 

B’.G(a, 9’) 4xN: 
Blog;8logQ’ 

= a,zG(z,Q’) - a:. 
UT - 99’ 

. (z’G(‘)(z, 9’)). 

and 
&(‘)(z,Q~) = & (zG(z, Q’))’ + 

&2-a 1 da’ O’ dk’ z’ -- 
R’ J I .’ 

F(--)2G(a)(;, $d’G(‘)(d, k’)z’G(z’, k’). (9) 

The first equation is the equation for the parton cascade which is written with better 
accuracy than the GLR equation (31, since the probability for two partons to have 
the same z and Q’ (G(‘) ) was introduced ( see ref. [7] where it was done first for 



details). The second one is new. From this equation you can see that in the GLR 
equation we assumed that there was no correlation between two gluons except the 
fact that they are distributed in the hadron disc of the radius R. However the second 
equation shows that it is not true and the correlation increases until the screening 
correction enters to the game and this growth will be stopped due to them. We 
can express the same physics saying that the correlation radius between two gluons 
increases with zg and they create a more compact system then the hadron. In eq. 
(9) we assumed that the probability of three parton interaction Gk’) cx Gca). G. 

4.The effective two dimension theory. 

The next step in our understanding as has been discussed should be the 
calculation of TV,, at large value of n. It is really amazing that we can reduce the 
complicated job of summing all Feynman diagrams in DLA of QCD to a very elegant 
two dimension theory. Indeed if we introduce the new variables t = y--r and R = y+r 
and field p(z) where + = (t, R) we are able to rewrite the function z”G(‘) in the form 
d’G(“) = T(~+“(z)~-“(0)) . The Lagrmgian of the effective theory looks as follows: 

L = &+(4 @-(a) - - + m’~+(z)~-(z) + X!P+(z)~+(z)v(a)cp-(a), es, es, (10) 

where ma = + and x = %n% > O. All our difficulties is seen tram the Lagrangian, 
namely we have the system of effective particles with attractive forces. Our experi- 
ence tells us that such forces lead to a fall toward the centre and an unstable system. 
However we have a two dimensional theory which could have a phase transition. In 
this case we could have some hope to find reasonable solution of QCD in the region 
of small zg. 

6. Conclusions. 

1. The GLAP evolution equation cannot describe the deep inelastic struc- 
ture function in the region of small ZB since the high twist operators give larger 
contribution than the leading one. 

2. The nonlinear GLR evolution equation is proven to be correct in QCD 
with large number of colours (NC - co), but it is not clear at all how well it will 
be able to describe the real situation. The smsll correction to the value of the 
anomalous dimension of the twist four operator encourages us, however the urgent 
problem is to calculate the anomalous dimension for twist n operator with n > N,. 

3. We need systematic study of high twist contribution and not only in the 
region of small 28. 
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